深入理解与应用Zookeeper(一)

深入理解与应用Zookeeper(一)

1. Zookeeper体系结构图

image.png

2. 分布式系统image.png

2.1 分布式系统是什么

分布式系统: 一个硬件或软件组件分布在不同的网络计算机上,彼此之间仅仅通过消息传递进行通信和协调的系统

这是分布式系统,在不同的硬件,不同的软件,不同的网络,不同的计算机上,仅仅通过消息来进行通讯与协调

这是它的特点,更细致的看这些特点又可以有:分布性、对等性、并发性、缺乏全局时钟、故障随时会发生。

2.2 分布式系统的特点

2.2.1 分布性
既然是分布式系统,最显著的特点肯定就是分布性,从简单来看,如果我们做的是个电商项目,整个项目会分成不同的功能,专业点就不同的微服务,比如用户微服务,产品微服务,订单微服务,这些服务部署在不同的tomcat中,不同的服务器中,甚至不同的集群中,整个架构都是分布在不同的地方的,在空间上是随意的,而且随时会增加,删除服务器节点,这是第一个特性
2.2.2 对等性
对等性是分布式设计的一个目标,还是以电商网站为例,来说明下什么是对等性,要完成一个分布式的系统架构,肯定不是简单的把一个大的单一系统拆分成一个个微服务,然后部署在不同的服务器集群就够了,其中拆分完成的每一个微服务都有可能发现问题,而导致整个电商网站出现功能的丢失。 比如订单服务,为了防止订单服务出现问题,一般情况需要有一个备份,在订单服务出现问题的时候能顶替原来的订单服务。 这就要求这两个(或者2个以上)订单服务完全是对等的,功能完全是一致的,其实这就是一种服务副本的冗余。 还一种是数据副本的冗余,比如数据库,缓存等,都和上面说的订单服务一样,为了安全考虑需要有完全一样的备份存在,这就是对等性的意思。
2.2.3 并发性
并发性其实对我们来说并不模式,在学习多线程的时候已经或多或少学习过,多线程是并发的基础。 但现在我们要接触的不是多线程的角度,而是更高一层,从多进程,多JVM的角度,例如在一个分布式系统中的多个节点,可能会并发地操作一些共享资源,如何准确并高效的协调分布式并发操作。 后面实战部分的分布式锁其实就是解决这问题的。
2.2.4 缺乏全局时钟
在分布式系统中,节点是可能反正任意位置的,而每个位置,每个节点都有自己的时间系统,因此在分布式系统中,很难定义两个事务纠结谁先谁后,原因就是因为缺乏一个全局的时钟序列进行控制,当然,现在这已经不是什么大问题了,已经有大把的时间服务器给系统调用
2.2.5 故障随时会发生
任何一个节点都可能出现停电,死机等现象,服务器集群越多,出现故障的可能性就越大,随着集群数目的增加,出现故障甚至都会成为一种常态,怎么样保证在系统出现故障,而系统还是正常的访问者是作为系统架构师应该考虑的。

2.3 大型网站架构图回顾

知道什么是分布式系统,接下来具体来看下大型网站架构图,这个图在前面分布式架构演进应该已经讲过,首先整个架构分成很多个层,应用层,服务层,基础设施层与数据服务层,每一层都由若干节点组成,这是典型的分布式架构,后面一大把的时间就是系统的学习里面的每一个部分

那么zookeeper在其中又是扮演什么角色呢,如果可以把zk扮演成交警的角色,而各个节点就是马路上的各种汽车(汽车,公交车),为了保证整个交通(系统)的可用性,zookeeper必须知道每一节点的健康状态(公交车是否出了问题,要派新的公交【服务注册与发现】),公路在上下班高峰是否拥堵,在某一条很窄的路上只允许单独一个方向的汽车通过【分布式锁】。

如果交通警察是交通系统的指挥官,而zookeeper就是各个节点组成分布式系统的指挥官。
image.png

2.4, 分布式系统协调“方法论”

image.png 2.4.1 分布式系统带来的问题
如果把分布式系统和平时的交通系统进行对比,哪怕再稳健的交通系统也会有交通事故,分布式系统也有很多需要攻克的问题,比如:通讯异常,网络分区,三态,节点故障等。

2.4.2 通信异常
通讯异常其实就是网络异常,网络系统本身是不可靠的,由于分布式系统需要通过网络进行数据传输,网络光纤,路由器等硬件难免出现问题。只要网络出现问题,也就会影响消息的发送与接受过程,因此数据消息的丢失或者延长就会变得非常普遍。
2.4.3 网络分区
网络分区,其实就是脑裂现象,本来有一个交通警察,来管理整个片区的交通情况,一切井然有序,突然出现了停电,或者出现地震等自然灾难,某些道路接受不到交通警察的指令,可能在这种情况下,会出现一个零时工,片警零时来指挥交通。

但注意,原来的交通警察其实还在,只是通讯系统中断了,这时候就会出现问题了,在同一个片区的道路上有不同人在指挥,这样必然引擎交通的阻塞混乱。

这种由于种种问题导致同一个区域(分布式集群)有两个相互冲突的负责人的时候就会出现这种精神分裂的情况,在这里称为脑裂,也叫网络分区。
2.4.4 三态
三态是什么?三态其实就是成功,与失败以外的第三种状态,当然,肯定不叫变态,而叫超时态。 在一个jvm中,应用程序调用一个方法函数后会得到一个明确的相应,要么成功,要么失败,而在分布式系统中,虽然绝大多数情况下能够接受到成功或者失败的相应,但一旦网络出现异常,就非常有可能出现超时,当出现这样的超时现象,网络通讯的发起方,是无法确定请求是否成功处理的。

2.4.5 节点故障
这个其实前面已经说过了,节点故障在分布式系统下是比较常见的问题,指的是组成服务器集群的节点会出现的宕机或“僵死”的现象,这种现象经常会发生。

2.5 CAP理论

image.png

前面花费了很大的篇幅来了解分布式的特点以及会碰到很多会让人头疼的问题,这些问题肯定会有一定的理论思想来解决问题的。 接下来花点时间来谈谈这些理论,其中CAP和BASE理论是基础,也是面试的时候经常会问到的

首先看下CAP,CAP其实就是一致性,可用性,分区容错性这三个词的缩写

2.5.1 一致性
一致性是事务ACID的一个特性【原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)】,学习数据库优化的时候deer老师讲过。

这里讲的一致性其实大同小异,只是现在考虑的是分布式环境中,还是不单一的数据库。

在分布式系统中,一致性是数据在多个副本之间是否能够保证一致的特性,这里说的一致性和前面说的对等性其实差不多。如果能够在分布式系统中针对某一个数据项的变更成功执行后,所有用户都可以马上读取到最新的值,那么这样的系统就被认为具有【强一致性】。
image.png 2.5.2 可用性
可用性指系统提供服务必须一直处于可用状态,对于用户的操作请求总是能够在有限的时间内访问结果。 这里的重点是【有限的时间】和【返回结果】 为了做到有限的时间需要用到缓存,需要用到负载,这个时候服务器增加的节点是为性能考虑; 为了返回结果,需要考虑服务器主备,当主节点出现问题的时候需要备份的节点能最快的顶替上来,千万不能出现OutOfMemory或者其他500,404错误,否则这样的系统我们会认为是不可用的。
2.5.3 分区容错性
分布式系统在遇到任何网络分区故障的时候,仍然需要能够对外提供满足一致性和可用性的服务,除非是整个网络环境都发生了故障。 不能出现脑裂的情况

2.5.4 CAP理论具体描述
来看下CAP理论具体描述: 一个分布式系统不可能同时满足一致性、可用性和分区容错性这三个基本需求,最多只能同时满足其中的两项 image.png TIPS:不可能把所有应用全部放到一个节点上,因此架构师的精力往往就花在怎么样根据业务场景在A和C直接寻求平衡;

2.6 BASE理论

根据前面的CAP理论,架构师应该从一致性和可用性之间找平衡,系统短时间完全不可用肯定是不允许的,那么根据CAP理论,在分布式环境下必然也无法做到强一致性。

BASE理论:即使无法做到强一致性,但分布式系统可以根据自己的业务特点,采用适当的方式来使系统达到最终的一致性; image.png

评论

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×